Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.

نویسندگان

  • Paul C Moe
  • Alejandro P Heuck
چکیده

Clostridium perfringens causes gas gangrene and gastrointestinal disease in humans. These pathologies are mediated by potent extracellular protein toxins, particularly α-toxin and perfringolysin O (PFO). While α-toxin hydrolyzes phosphatidylcholine and sphingomyelin, PFO forms large transmembrane pores on cholesterol-containing membranes. It has been suggested that the ability of PFO to perforate the membrane of target cells is dictated by how much free cholesterol molecules are present. Given that C. perfringens α-toxin cleaves the phosphocholine headgroup of phosphatidylcholine, we reasoned that α-toxin may increase the number of free cholesterol molecules in the membrane. Our present studies reveal that α-toxin action on membrane bilayers facilitates the PFO−cholesterol interaction as evidenced by a reduction in the amount of cholesterol required in the membrane for PFO binding and pore formation. These studies suggest a mechanism for the concerted action of α-toxin and PFO during C. perfringens pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfringolysin O: The Underrated Clostridium perfringens Toxin?

The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo st...

متن کامل

Toxin-neutralizing antibodies protect against Clostridium perfringens-induced necrosis in an intestinal loop model for bovine necrohemorrhagic enteritis

BACKGROUND Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the rapid progress and fatal outcome of the disease, vaccination would be of high value. In this study, C. perfringens toxins, either as native toxins or after formaldehyde inactivation, were evaluated as possible vaccine antigens. We determined whether antisera raised in calves against these toxins...

متن کامل

Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins.

Cholesterol-dependent cytolysins (CDCs) constitute a family of pore forming toxins secreted by Gram-positive bacteria. These toxins form transmembrane pores by inserting a large β-barrel into cholesterol-containing membrane bilayers. Binding of water-soluble CDCs to the membrane triggers the formation of oligomers containing 35-50 monomers. The coordinated insertion of more than seventy β-hairp...

متن کامل

The synergistic necrohemorrhagic action of Clostridium perfringens perfringolysin and alpha toxin in the bovine intestine and against bovine endothelial cells

Bovine necrohemorrhagic enteritis is a major cause of mortality in veal calves. Clostridium perfringens is considered as the causative agent, but there has been controversy on the toxins responsible for the disease. Recently, it has been demonstrated that a variety of C. perfringens type A strains can induce necrohemorrhagic lesions in a calf intestinal loop assay. These results put forward alp...

متن کامل

Enhanced production of phospholipase C and perfringolysin O (alpha and theta toxins) in a gatifloxacin-resistant strain of Clostridium perfringens.

Clostridium perfringens-induced gas gangrene is mediated by potent extracellular toxins, especially alpha toxin (a phospholipase C [PLC]) and theta toxin (perfringolysin O [PFO], a thiol-activated cytolysin); and antibiotic-induced suppression of toxin synthesis is an important clinical goal. The production of PLC and PFO by a gatifloxacin-induced, fluoroquinolone-resistant mutant strain of C. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 49 44  شماره 

صفحات  -

تاریخ انتشار 2010